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Abstract:

This research aims to eventually create problem solvers that automatically adapt their
problem solving techniques, representations, and heuristics to fit the current problem and
computing environment. In this report, we discuss our prototype, RA*, which automatically
adapts its heuristics to the current problem and computing environment. RA* does this by
computing the impact of its candidate heuristics upon its ability to solve the problem in this
environment and using the heuristic with the most impact. Our experiments show that RA*
can solve more of the 2011 IPC Deterministic Optimization Track’s problems than current
state-of-the-art heuristic selection systems and RA* can solve them faster.

Introduction:

Ideally, all a user would need to give a general problem solver is a description of the problem
and the problem solver would adapt its solution methods, representations, and heuristics to
fit its current problem and computing environment!. Unfortunately, far too often today’s
users must adapt their problems to fit the problem solver. This research aims to change that.

Artificial Intelligence (AI) has been very successful in providing a general approach to
problem solving. Along with this approach, Al has come up with a large number of solution
techniques, problem representation schemes, and types of heuristics. Unfortunately, no one
combination is best for all problems. Worst still is that solution techniques, problem
representations, and heuristics all interact and we do not yet understand the nature of this
interaction sufficiently to efficiently search for the right combination for a given problem and
computing environment.

This is the beginning of our research on this challenge. Instead of trying to find the right
combination of these components, we focus on a single component, heuristics. Specifically,
how to efficiently search for the right heuristic for a given problem, computing environment,
solution technique, and problem representation. As we succeed with this, we will move
moving on to doing this individually for the other two components (techniques and
representation), and after that we will look at the problem of finding the right combination
across all three components.

In order to leverage our experience with heuristics to the other components, there are a

! The computing environment includes the processor speed, amount of memory, and availability of co-
processors.
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number of considerations that our approach should satisfy:

» It searches through an extremely large number of candidates.

» It predicts the impact of the different candidates upon the resources needed to find
the solution.

* Those predictions are accurate enough that they can be used to choose an
appropriate candidate that significantly shortens the search time for the solution.

* Making these predictions should be cheap enough that their cost is not greater than
the time saved by using their choice of heuristic.

Theory:

Our problem solver, RA*, is built on top of the Fast Downward planner (Helmert 2006). Fast
Downward comes with a number of heuristics and heuristic generators. Standard Fast
Downward allows the user to select which heuristic/heuristic generator is to be used with its
version of A*. However, RA* uses Fast Downward’s heuristics and heuristic generators to
provide a reasonable number of heuristics for a given problem. RA* will then decide which
combination of heuristics to use in solving the problem.

Predicting the Best Combination

The core idea of this research is that the problem solver decides on the combination to use
by predicting which one will result in the shortest runtime to solve the problem. For a given
problem, the problem solver uses the following formula to predict runtimes:

tO=(b) * p.V*(tx +11) (Formula 1)

Where tf) is the time it takes the problem solver to expand all the nodes with an f-value of f,
using heuristic combination ¢. bc is the heuristic branching factor when using heuristic
combination ¢. p(f) is the probability that a node’s state is not the same as one that has
already been expanded when using heuristic combination ¢ to expand nodes with f-values f.
tv. is the average time it takes heuristic combination ¢ to evaluate a state, and &x is the
average time it takes to expand a node without evaluating its state. For a given problem and

d
heuristic combination, ¢, our predicted runtime for solving the problem is simply: Etc(i),

i=0
where d is the optimal solution path length of the problem. Some of these terms, e.g., tv,
and &x, have values that can be measured when the problem solver starts the search process.
We call these a priori terms. Other terms, e.g., b. and p/f), have values that can be
estimated while the problem solver is engaged in solving the problem. We call these a
posteriori terms. The values of all of these terms are problem specific.

In general, because each combination may have a different branching factor and a different
per node cost, no one heuristic combination will be best for all f-levels. Heuristic
combinations that are cheap but with higher branching factors are normally best at low -
levels and heuristics with low branching factors but higher per node costs are normally best
at higher f-levels. This means that which combination is best depends upon which f-fevel we
are interested in. This allows us to use formula 1 in a number of ways. Assuming we have
values for our a priori and a posteriori terms then we can use formula 1 to predict for which
f-levels one combination will be faster than another combination. If we knew the optimal
solution path length for the given problem then we could use the formula to predict which
combination will enable the problem solver to find that solution in the least time. If we did
not know the optimal solution path length but had a deadline, then we could predict the
combination which would get to the highest f-leve/ within that time limit and consequentially
have the best chance of finding the solution before that deadline. We could also use the
formula to just predict which combination would be best for the next f-level, which is what
RA* uses the formula for.

Computing Values for Non-Branching Factor Terms
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In order to use formula 1 for any of the above purposes, we need to have values for our
terms. The tx value is measured on the root node of A*'s search graph. The evaluation time
for each individual heuristic is also measured at the root node. When we need the evaluation
time, tv,, for a particular combination, ¢, we simply add together the evaluation times for the
individual heuristics comprising c. The value for p(f) is approximated by the ratio of the
number of nodes with f-value of fwhich were evaluated (which means that they were not the
same as a previously expanded state) over the number of nodes that were generated with
that f-value.

Computing the Values for the Combinations’ Branching Factors Terms

Computing the branching factor for a specific combination of heuristics is relatively
straightforward as long as we ignore the cost of computing it. Using that combination of
heuristics, the search graph is grown to a sufficient f-level that the branching factor is
relatively stable, then the number of nodes generated at that f-level is counted and as well as
the number of nodes generated at the next f-level. The branching factor for that
combination of heuristics is the ratio of the latter count over the former count. While
growing a search graph for one combination is feasible, we are talking about large numbers
of combinations. Our largest set of heuristics had 120 heuristics, which translates into 212
(or 10%) combinations, this rules out growing a search graph for each combination. What we
would like to do is to grow a single search graph which allows the system to compute the
branching factor for any of those 2% combinations. We will now briefly describe how RA*
does this.

As we saw above, computing the branching factor is counting the evaluated nodes and the
generated nodes, and taking the ratio of these two counts. Initially RA*’s branching factor is
erratic. However, RA* expands the initial part of the search until the branching factor
becomes relatively stable and samples the nodes keeping track of which heuristics are
responsible for those nodes’ expansions. This rest of this process is described in more detail
in (Franco et al., 2013).

Experiments and Analyses:

We would like to know how well our approach works with respect to two reference points.
One is with respect to picking the best possible subset for each problem over some
representative range of problems. The other is with respect to the current state-of-the-art
approaches. This section describes experiments that show our approach enables a problem
solver to solve more problems with less search effort and that the actual overhead of our
approach? can be quite small.

Experimental Details

To do these comparisons we need a performance benchmark. The most commonly used
benchmark is performance on the problems and domains of the past International Planning
Competitions (IPC), the last one was in 2011 and the next one is in June 2014. Each IPC has
a number of different tracks representing different types of planning problem domains and
tasks. We have chosen the 2011 IPC's Deterministic Optimization Track as our benchmark.
This track has 14 domains and each domain has 20 problems. To make the comparisons as
fair as possible the subsets of heuristics are run with exactly the same planner, so that
differences in performance can be attributed to differences in the quality of the subset of
heuristics chosen. Fast Downward is currently the planner of choice for benchmarking. It is
publically available, highly customizable and has a large number of heuristics and heuristic
generators already built in. We do all the comparisons we talk about in this report using Fast
Downward.

> This refers to our approach to selecting a combination of heuristics, not to generating the basic set of
heuristics which can be quite expensive.
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In the IPCs, systems are ranked by the number of problems they are able to solve within the
given memory and time limits. For the 2011 IPC, problem solvers are only given 6 GBs of
memory and only allowed 30 cpu minutes per problem. We will follow this ranking system.

While we would like to find out what is the best performance possible from selecting a subset
of our 45 available heuristics, the straightforward approach of just running the benchmark on
each of the 2* possible subsets is not feasible. Neither is running the benchmark on each of
the 20,000 subsets generated by our approach feasible. If we assume that each of the 192
problems take an average of one minute then running the benchmark on each of the subsets
would take 7.3 cpu years. We are currently considering branch-and-bound approaches to
estimating the best possible performance achievable by any of the 20,000 subsets, this would
allow us to assess how close to optimal our selection is on average.

So how does RA* fare against state-of-the-art systems? Unfortunately, it is hard to do a
totally fair comparison. There are three approaches currently being used: “generate and
select”, select on a node-by-node basis, and default selections. Three of the systems that do
the first approach (iPDB (Haslum,et al. 2007), GA-D, and GA-ND (Edelkamp 2007)) combine
the processes of generating and picking the heuristic so that it's hard to know how well they
would do given our set of heuristics. The last system (Rayner et al., 2013), using the first
approach, does select a subset out of a given set of heuristics. However, since it selects its
subset based on minimizing the size of search tree, it would be unlikely to compete
successfully when measured by solution time.

There have been three systems (se/max (Domshlak et al. 2012), Lazy A* and Rational Lazy
A* (Tolpin et al. 2013)) that take the second approach. However, they only pick from two
heuristics not 45. They pick which heuristic to apply to the current node. Their resuits so far
have proved promising, but it's not yet obvious how easily this approach will scale up.

There are two standard default methods for using a set of heuristics. One (MAX) is to use all
of them and take their maximum value, the other (RAND) is to pick a heuristic at random at
each node and use its value. The former produces the smallest possible search tree for that
set of heuristics, but also has the highest cost per node. The latter produces a larger search
tree but has a much lower cost per node.

As our state-of-the-art heuristic selection systems, we have chosen iPDB, GA-D, GA-ND, MAX,
RAND, and two standard heuristics LM-cut and #™*, LM-cut is a very costly but very accurate
state-of-the-art heuristic and #™is, like RAND, a very cheap but not as accurate heuristic.
We have modified GA-ND and GA-D to return their top 21 heuristics instead of just their top
heuristic. The performance we report for GA-ND and GA-D is for the modified versions. Thus
we have a set of seven systems to compare against and 45 heuristics for each problem from
which to choose a subset.

We have run experiments to answer two questions: (1) How expensive is our approach? and
(2) How does its results compare to state-of-the-art systems? The experimental results we
review here are reported more extensively in (Barley et al., 2014).

Cost of Our Approach
Avg Per Problem Standard Deviation Ratio
Heuristic Generation 196.51 200.63 69.0%
Sampling/Selection 2.37 15.57 0.8%
Search For Solution 86.09 225.17 30.2%
Total 284.97 441.37 100.0%

Table 1: RA*'s Runtime Breakdown Per Problem

In our experiments, RA*'s average runtime cost per problem, to do the sampling and

Distribution A: Approved for public release Distribution is unlimited




compute the estimated runtimes of all the heuristic combinations that are likely to be chosen,
is 2.37 seconds, the standard deviation is 15.57 seconds. So for a set of 45 base heuristics,
the total selection cost is quite a small part (0.8%) of RA*'s average total runtime per
problem. The majority of the runtime (69.0%) is spent generating heuristics.

To understand how RA* manages to spend so little on choosing its combination of heuristics,
we need to look at what we mean by “all the heuristic combinations that are likely to be
chosen”. As mentioned earlier, given n heuristics, there are 2" combinations. For large
enough n, RA* will not, in any reasonable amount of time, be able to estimate the runtimes
for all combinations. Fortunately, this is not necessary. There is a diminishing return of
adding new heuristics to a combination (Zhavi, et al., 2007). This is where the advantage of
adding another heuristic to the combination decreases with the number of heuristics already
in the combination. This leads to the situation where adding more heuristics will actually lead
to increases in runtime.

While RA* does not check for this condition, the current default settings, for determining the
maximum size of combinations, seem to satisfy this condition. While RA* is sampling, it
prunes away heuristics deemed to be too weak to be useful. At the end of the sampling
period, RA* uses the number of heuristics remaining to determine the maximum number of
heuristics it will allow in any combination. By default, RA* looks at no more than 20,000
combinations. RA* determines the maximum combination size that will create less than
20,000 combinations. RA* exhaustively looks at every combination of the remaining
heuristics up to that maximum combination size. It is RA*’s pruning of the weak heuristics
and subsequent limiting of the number of combinations that it will consider, that enables RA*
to spend so little time selecting its combination of heuristics.

Comparing RA*’s Performance with State-of-the-Art Systems

RA*'s cost of selecting its combination of heuristics may be low, but how does its choice
compare to what current state-of-the-art systems are able to do?

As a sanity test we first check to see how RA* would have fared in the 2011 competition.
RA* solved 187 problems and Fast Downward-StoneSoup (Helmert 2011), the 2011 winner,
solved 185 problems. Fast Downward-StoneSoup is a portfolio planner and the differences
between it and RA* go well beyond just which heuristics they chose. While we could not run
under a compute environment identical to the one used for the competition, we believe that
our processor was not significantly faster than the ones used in the competition. It seems
clear that RA* is competitive with the best of the state-of-the-art problem-solvers.

To see if our approach is an improvement on the state-of-the-art heuristic combination
selection systems, we compared RA*’s performance against the seven other systems. Our
results come from analyzing the performance of all eight systems on the 192 problems (out
of the 280 problems available) that were solved by at least one of the eight systems. Fuller
descriptions of the individual systems can be found in (Barley et al., 2014). Table 2 shows
the performance of each of the eight systems on the 192 problems. The “"Avg” column shows
the average time each system took on each of the problems. The “Sum” column shows the
total time each system took on all 192 problems. RA*, on average, took only 70% of the
time that the next fastest system (GA-ND) took on these problems. In the IPC, each system
is limited to 30 cpu minutes per problem and to a six GB memory limit. RA* did not generate
any new types of heuristics, it simply chose a subset of the forty-five heuristics already
created for the problem.
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Avg, Std. Dev. Sum
RA* 88.46 240.74 17,000
GA-ND | 123.85 | 280.17 23,800
GA-D | 133.83 | 314.39 24,900
iPDB 212.01 455.71 40,700
MAX | 260.91 500.40 50,100
RAND | 321.23 | 505.60 59,600
LM-cut | 446.62 | 699.15 85,800
RMes 1 706,12 | 820,01 136,000

Table 2: Search Time Per Problem

If we look at Table 3, we see that although RA* solved more problems than the other
systems and spent significantly less time, on average, searching for the solution than the
other systems, it did not solve proportionally more problems. Part of the reason for this is
undoubtedly because the problems within a domain had a wide range of difficulties (i.e.,
optimal solution path lengths). For those domains with a high branching factor, a problem
with a solution just one step longer could take an order of magnitude longer to solve. For
these domains, all the systems could only solve the easy problems and nothing else (e.g.,
barman). If the branching factor was small enough then all the systems could solve all of the
problems (e.g., sokoban). However, for many domains, most of the systems could find the
shorter solutions and none could find the longer solutions. For these domains with moderate
branching factors, the difference between the systems’ ability to solve a problem was the
depth on which that transition from solvable to non-solvable® occurred.

Problems Solved

RA* problems solved (problems solved after sampling phase)
RA* | GA-ND | GA-D | MAX | iPDB | LM-cut | RAND | h™e® total
Barman 4(4) 4 4 4 4 4 4 4 4
Elevators 19(9) 19 19 i8 16 18 16 13 19
Floortile 6(4) 3 4 6 2 6 2 6 6
Nomystery 20(4) 20 20 20 18 14 20 8 20
Openstack 15(10) 16 16 13 16 16 15 16 16
Parcprinter 13(3) 13 13 13 11 13 10 i1 13
Parking T(7) 1 1 1 7 | 0 0 7
Pegsol 19(14) 19 19 17 18 17 17 17 19
Scanalyzer 14(4) 10 9 11 10 11 6 6 14
Sokoban 2009) 20 20 20 20 20 20 20 20
Tidybot 13(11) 12 11 11 13 12 7 5 13
Transport 9(4) 10 10 8 6 6 7 6 10
Visitall 18(2) 16 17 17 16 10 13 9 18
Woodworking 10(5) 10 9 11 7 11 5 4 13
Total | 187(92) 173 172 | 170 | 164 159 143 123 | 192

Ratio | .97(.49) .89 .88 B8 | .85 .83 14 .64

Table 3: Problems Solved for Each System for Each Domain

The 30 minute time limit applies not only to the search process but also to the total time
taken by all the processes, including the heuristic generation process. So, another possible
explanation for why RA* did not solve proportionally more problems is that while it spent
much less time per problem and solved more problems, it also spent a lot more generating its

* Non-solvable in the sense that Fast Downward is no longer able to solve it within the IPC constraints.
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sets of heuristics than its closest competitors GA-ND and GA-D. On average RA* spends 70%
of its time on generating its set of 45 heuristics, while GA-ND spends about 50% of its time
on heuristic generation and GA-D only spends 35%. Table 4 shows the average percentage
of processing time spent on generating heuristics for each system. Both /™* and LM-cut do
not produce heuristics (they are themselves heuristics), so their heuristic generation time is
zero.

Avg | Std. Dev. Sum Ratio

RA* 196.51 | 200.63 | 37,729.59 | 69.0%

GA-ND | 108.84 | 111.04 | 20,896.48 | 46.8%

MAX | 19240 | 201.25 | 36,940.87 | 42.4%

RAND | 196.45 | 208.44 37,700 | 37.9%

GA-D | 7196 98.90 12,815.52 | 35.6%

iPDB 15.67 25.24 3,0084 | 6.6%
R 0 0 0 0%
LM-cut 0 0 0 0%

Table 4: Runtime for Generating Heuristics

Avg. | Std. Dev. Sum

GA-D | 20579 | 37140 38,700
iPDB | 227.68 | 469.94 43,700
GA-ND | 232,68 | 333.67 44,700
RA* 284.97 | 319.38 54,700
IM-cut | 446.62 | 699.15 85,800
MAX | 45331 | 571.95 87,000
RAND | 517.68 | 607.15 99,400
R 170612 | 820.01 136,000

Table 5: Average Total Time Per Problem

While RA* solved more problems and solved them quicker than the other systems, RA* also
spent more time generating its set of heuristics than any of the non-default systems (since
RA* used those non-default systems to generate its heuristics, it actually used the same
amount of time as all of them combined). Table 5 shows the impact RA*’s larger heuristic
generation time has on its total time compared to the other systems. RA* is 38% slower
than the fastest overall system, GA-D, when total time is considered, even though RA* is 51%
faster than GA-D when only their search times are considered. This suggests that the
weakest part of RA* is its current reliance on other systems to generate its set of basic
heuristics.

Results and Discussion:

This research explores whether a problem solver can be tailored to a specific problem and
computational environment and produce state-of-the-art performance. We want problem
solvers that can dynamically tailor which solution techniques, problem representations, and
search heuristics they use to solve a given problem. Unfortunately, the field does not yet
sufficiently understand the interactions between these components to address the entire
problem. Instead, this research is focusing on dynamically tailoring which heuristics to use
with a specific problem and computational environment. We wanted our system to do the
following:

e Search through an extremely large number of candidates.

e Predict the impact of the different candidates upon the resources needed to find the
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solution.

* Those predictions are accurate enough that they can be used to choose an
appropriate candidate that significantly shortens the search time for the solution.

* Make these predictions cheap enough that their cost does not exceed the time saved
by using their choice of heuristic.

In our experiments, RA* gathered information on 2* combinations of heuristics and predicted
the runtime of up to 20,000 of those combinations. These predictions were good enough to
enable RA* to both solve more problems and to solve them quicker than state-of-the-art
heuristic selection systems on the IPC 2011 benchmark. While the cost of making our
predictions is very cheap (only 0.8% of RA*'s total runtime cost), the cost of using these
other systems to generate the set of base heuristics is very expensive (69% of RA*'s total
runtime cost). Future research will investigate the possibility of incorporating the process of
generating the basic heuristics into this framework. In particular, we will look at the
possibility of integrating the generation process into the evaluation procedure.
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